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hAbstract

-" s A nonlinear 0-1 program can be restated as a multilinear 0-1

program, which in turn is known to be equivalent to a linear 0-1 program

with generalized covering (g.c.) inequalities. In a companion paper [6]

we have defined a family of linear inequalities that contains more

compact (smaller cardinality) linearizations of a multilinear 0-1 program

than the one based on the g.c. inequalities. In this paper we analyze the

dominance relations between inequalities of the above family. In particular,

we give a criterion that can be checked in linear time, for deciding whether

a g.c. inequality can be strengthened by extending the cover from which it

was derived. We then describe a class of algorithms based on these results

and discuss our computational experience. We conclude that the g.c. in-

equalities can be strengthened most of the time to an extent that increases

with problem density. In particular, the algorithm using the strengthening

procedure outperforms the one using only g.c. inequalities whenever the

number of nonlinear terms per constraint exceeds about 12-15, and the dif-

ference in their performance grows with the number of such terms. -

9" • f ".%
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NONLINEAR 0-1 PROGRAMMING:

II. DOMINANCE RELATIONS AND ALGORITHMS

by

Egon Balas and Joseph B. Mazzola

1. Introduction

In this paper we discuss solution methods for the multilinear 0-1-

programming problem

(MLP) maxtfO(x) Ifk(x)< bk, keK, x binary)

where the functions f and f keK, are of the general form
0 k

(1) f(x)= E a( T xi).
.N iCQ "

Here aj, JeN, are real numbers, and n means product. Any nonlinear

0-I program involving real-valued functions can be restated in this form [14].

Applications of nonlinear 0-1 programming span many areas. Such

formlations have been used in modular design [7, 81, media selection [22],

project scheduling [171, capital budgeting under uncertainty [16], cluster

analysis [181, diagnostic testing [151, accounting control systems [13],

production planning in flexible manufacturing systems [19, 201, etc.

Quadratic 0-1 programming, including the quadratic assignment problem,

has a host of well known uses.

In a companion paper [61 we have introduced a new linearization of

(MLP) (first presented in [41), which uses only the original variables.

Specifically, for a multilinear inequality of the form

(2) f(x) Z. a (r x) b
JeN i.Q.

• 
• .p,-.
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we defined a family 7 of linear inequalities equivalent to (2) in the sense that

a 0-1 vector x satisfies (2) if and only if it satisfies every inequality of

:, and we identified several proper subfamilies of 7 that are also linear

equivalents of (2). The members of 7 are associated with covers for (2),

and the subfamily of Y corresponding to minimal covers is the set of general-

ized covering inequalities (set covering inequalities in the original variables

and their complements) shown by Granot and Hammer [12] to be equivalent to (2).

Some other subsets of Y, associated with covers for (2) that are not minimal,

give more compact linearizations, i.e., linear equivalents of smaller

cardinality.

In the remainder of this section we restate those results of (61 that

we will need in the sequel. In section 2 we examine dominance relations

between inequalities of ., with a view toward deriving criteria for generating

linear equivalents of (2) as compact as possible. We first give a necessary

and sufficient condition for an inequality of Y to imply another one (with

respect to binary vectors). We then show that a generalized covering

inequality in 5, i.e., a member of 7 associated with a minimal cover M for

(2), can be strengthened by including into M certain indices JCN\,M if

and only if an easily verifiable condition holds.

In section 3 we introduce a class of algorithms for solving multi-

linear 0-1 programs, based on these results. Like the earlier procedure

of Granot and Granot [91 (see also [10, 11]), our algorithms generate

linear inequalities sequentially from those constraints of (MLP) violated

by the current solution until such time when an optimal binary solution

to the current linear constraint set satisfies all constraints of (MLP);

such a solution is optimal for (MLP). However, while the procedure of

I;.-. .... -. . .. .. . . ...... .. . ........ .. .-.. . . . .. .. ..... ... . .......
. . ." _.' . _ .... . . . .. . _. . .,. 

•
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[9, 10, 111 uses generalized covering inequalities only, the main version

of our algorithm generates stronger inequalities whenever they are obtain-
able via the criteria outlined above. Our algorithms use as a subroutine

the 0-1 (linear) programming heuristic of Balas and Martin (3].

Section 4 discusses our computational experience on randomly generated

multilinear 0-1 programs with up to 20 constraints, 50 variables, and 60

nonlinear terms per constraint. In particular, an algorithm that uses the

results of this paper to generate strengthened linear inequalities is compared

to one that uses only generalized covering inequalities, like the procedure

of [9, 10, 11]. The algorithm that uses only generalized covering inequalities

did better on problems that had on the average less than 12 nonlinear terms

per constraint, whereas the one that uses the strengthened inequalities did

better on the problems that had on the average 16 or more nonlinear terms per

constraint. Furthermore, the difference in performance tends to increase

sharply with the number of terms per constraint.

We also present computational results concerning the use of the

procedure as a heuristic. Typically, the heuristic solutions obtained were

(guaranteed to be) within 37. of optimality, and for those cases in which

the optimal solution was known, the heuristic solution was on the average

within 0.25% of the optimal integer solution. In the heuristic mode, our

algorithm is able to solve substantially larger problems than those noted

above, and does so in a reasonable amount of time with practically acceptable

accuracy bounds.

The results of this paper were circulated under [5].

Given a multilinear inequality (2), let

. UcNja > 0),N - UeNa < 0]

• l + . . , ° +.+°-+ .+ +I + - + °-. + .•• .• • •,.°..-• ,•. .•.m " •-• . •m++% " % ' " . - + . . % • •.J
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and

i .
f+(x) £ Z:+ a( T xj), f'(x) - E - aj( .T x1).."-i..

JeN ajieQj JeN" " i.cQji'i .,

For any MQN, let QM= U QJ' Q=QN9 and q = IQI. Let " be the
jCM

family of mappings ;0 that associate to every jeN" some icQJ , and for each

gpc§, let

h:(x) = _ a x •--..
jeN

For any pefr, let Q be the range of V, i.e.,

Q = (iCQi = QP(j) for some J 'N .

A set M QN is said to be a cover for the inequality (2) if

E IaJI > b E-

A cover M is minimal if T is not a cover for any T C M.

Thus, a set M N+ is a cover for the inequality

(2+) f(x) < b

if and only if

a >b

i.e., if and only if MUN is a cover for (2). We will denote

ffi (MQN+IM is a cover for (2+)].

For any xi e(0,13, the complement of xi is defined to be xi  1 - x.-'

The following result (Theorem 11 of [61), presented here without

proof, is fundamental in defining the family . of linear inequalities

equivalent to the multilinear inequality (2).

I..
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Theorem 1. The vector x e(O,l q satisfies (2) if and only if it

satisfies

(3)M, E. C xi + E ixi -...
~M,c H- HQ i1 1

i x i -.Q

for every M e C, coe, where

M E a-b

M M

H1 'ii00 QM=t- minfc0, a i) -

j eM ieQ.

and

min(, lal, i .:j0 N' i=i()

Denoting by 9 the family of inequalities (3) for all M eC, and
M, CP

cpe, Theorem 1 states that the multilinear inequality (2) is equivalent

to the system of linear inequalities defined by 9.

Now let Me C and (pet be such that QM # 0, i.e., there exists

some ieQM nQ , for which both xi and x have positive coefficients in (3)M,C.-

Then (3) remains essentially the same (in the sense of having the sameM.'.C"

solution set) if min( M, B) is subtracted from H, from and from cM. But

then all those remaining coefficients , J # i and k i i, whose value

exceeds the new right hand side, (aM a minZ , Ocy ], can be replaced
0 0

by (a )'. Thus the presence of indices icQMnQ allows an immediate

(trivial) strengthening of the inequality (3)

For any pc" , if MeC, is such that the set M uN is a minimal cover

for (2), then the linear inequality (3) resulting from Theorem I is readily

seen to be of the form

(4) E X + E x ."

[i

= ... . .

- - - - - - - - - - - - ~ . ~ ~ -. . -I
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Furthermore, for any such set M, if M and cp are such that QMnQO A,
the inequality (4) is vacuous. Thus the only inequalities (4) of

interest are those such that Q. n

The multiliear inequality (2) is also shown in (6] to be equivalent

to the system of multilinear inequalities (each having all positive

coefficients) defined by

(5) + Z lajl (j b aj N" jcN"

for all c'. Thus, replacing (2) by all inequalities (5),P, ce§, and then

generating the sets 3 of linear inequalities equivalent to each inequality

(5) , results in a family 5 = U 9 of linear inequalities which linearizes

(2). In fact, we observed in [6) that the previously defined family 3 is

properly contained in Y; namely, while contains an inequality for every

cover of (2), S contains an inequality only for every cover of (2+).

The inequalities in 9 corresponding to minimal covers of (2) are the

generalized covering inequalities known to be equivalent to (2). Thus all

members of 5 that are not generalized covering inequalities correspond to

covers of (2) that are not minimal.

We are now prepared to investigate the relative strength of inequalities

(3), derived from covers M that are minimal and those that are not.

2. Dominance Relations -

An inequality A is said to dominate an inequality B if every nonnegative

x satisfying A also satisfies B. Further, A strictly dominates B, if A

dominates B and there exists some nonnegative x that satisfies B but not A.

We shall also find it useful to define the following weaker notion of dominance.

c-•".. .,"
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An inequality A is said to c-dominate an inequality B if every 0-I

point x satisfying A also satisfies B. Further, A strictly c-dominates B,

if A c-dominates B and there exists some 0-1 point satisfying B but not A.

It is easily verified that an inequality A can c-dominate an inequality B

without A dominating B, whereas the converse is of course false. It is

also easily verified that A c-dominates B if and only if every cover for B

is a cover for A, and A strictly c-dominates B if and only if A c-dominates

B and there exists a cover for A that is not a cover for B. Hence the term

c-dominance.

We will occasionally call an inequality A stronger than B if A strictly

c-dominates B.

We have seen that the inequalities of the family Y are intimately

related to covers for the multilinear inequality (2). In the context of

linear inequalities, it is known [1, 21 that canonical inequalities derived

from minimal covers can usually be strengthened, and can nevez be weakened

by extending the covers. Unfortunately in the case of nonlinear inequalities,

only the first part of this statement is true: extending a minimal cover may

weaken the inequality associated with it.

Example 1. To show that extending a minimal cover can actually weaken

the inequality derived from the cover, let

7x x x + 6xx3x + 5x x + 2x . 12,2 5 6 1 3 4 2 4 1 2x 3  12

with Q, (2,5,6), Q2 = (1,3,4), Q3 = (2,4) and ( -1,31. Applying Theorem 1

and using the minimal cover M ( 2,3,41, we obtain the inequality

x' + x + x3 + x ':':
1 ~'2 X 3  4

Now, extending the minimal cover M to fl,2,3,41, we obtain the inequality

~. . . . . . . . . . . .
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8x +8X 2 + 8 3 + 8x4 + 7X5 + 7X6  8'

which is actually weaker than (strictly c-dominated by) the first inequality.""

Fortunately, the phenomenon illustrated by Example I can be precisely

characterized. Next we address the practically important question as to when

an inequality (3)M,, where M cC, can be strengthened by expanding the cover M.

MMWe will assume that cpet" is given, and therefore will write (3)M for

(3)M, and 8 for 8. From the discussion at the end of section 1 it should

be clear that the presence of indices ieQMnQ , denoting the presence of

positive coefficients for both xi and xi , denotes a "weakness" of the in-

equality (3)M 9 in that it allows for a trivial strengthening. We will

therefore assume that M is chosen such that QM - 0, and furthermore

that M is expanded into a set R such that Q R n too.

In what follows, summation over the empty set is taken to yield 0.

First we give a necessary and sufficient condition for an inequality

R- M

cR

to c-dominate the inequality (3)M, where M C and MCRQN+. For any 0-I

vector x with support Q(x) f T, the difference between the values of the

right hand side and the left hand side of (3) is

a(T)R -R .R O

iCQR\T iCQ lT'

while the corresponding difference for (3) is

M M"A(T)M = aO " i " - - i"-°,

iCQM 'T i6Q f T

.-,- ... "°,°'*~
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Clearly, the inequality (3)R ((3) M ) is violated by x if and only

if A(T) >0 (6(T)M >0).

By definition, the inequality (3)R c-dominates 3 )M if and only if

every 0-1 vector x that violates (3)M also violates (3)R  Hence (3) R

c-dominates ()if and only if

(6) A(T)R > 0 for all T Q such that A(T)M > 0.

Condition (6) can be used to prove the following dominance property

for inequalities of the type under discussion.

Theorem 2. Let M eC and MCRQN + . The inequality (3)R c-dominates

(3)M if and only if

(7) E (IQ\TJ - l)a < A(T)M
j eR M

for all TQMUQ C (including T = 0) such that A(T)M > 0.

Proof. We will show that the condition of the Theorem is equivalent

to (6). From the definitions (see Theorem 1),

R =M
00 010 + a..

j ,eR\

Further, for icQM,

R M M
Of., mina + -=--- a., a, +  a

j eR"M j eR'\M i SQ

M M M

j cR',\M i SQ.

".1

..................... ...................... . . .

r. '.,,,'," -'. .. ..",',. . ,", " , ,. ,, ," . -. ," ,"-" .""" ? "," , "" '- ". . "-, ," .'-" , "" ,.'''. ""-.". ,2 - , .,. .. '- " ' ".
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and for iQR\QM,

C= min(c + a } a:.

JeR\ M  j rcR\M ieQ

- a.

Thus for any TaQ,

(8) A(T)R= (T)M+--a - (+ a a
j eR\HM iCQR\T j icQ-

- I \T Ia(T M + 7, aj IQ \Ta

j cR\14 j eR'\ s

and therefore condition (6) holds if and only if (7) holds for all T Q such

that A(T)M > 0.

It remains to be shown that (7) holds for all T Q such that A(T)M > 0

if and only if it holds for all T QQM U Q% such that A(T)M > 0. The "only if"

part is obvious. To show the "if" part, let T0 Q, T0 %UQ, be such that

A(To)M >0, and let T1 = T0 f (%UQ). Then A(T0)M = A(Tl)M, and since aj > 0 - .

* for all JsR and T CT0, if (7) is violated for T = To, it is also violated for

1 0'

Given a cover M, Theorem 2 can in principle be used to find an

extension R of M (if one exists), such that the inequality (3)R c-dominates

(3)H. However, the condition of Theorem 2 is in general not easy to check.

We will show below that for the family of covers M that are minimal, the

condition of Theorem 2 reduces to a simpler one, which can be checked in

linear time. Before discussing that case, however, we wish to note that,

: '."", .'I

q ~ ~ ~~~~~~~~~... ................ ............. .. ................... .. ::



unlike in the case of the sequential lifting procedures for linear in-

equalities in 0-1 variables (see, for instance, [11), if one wishes to :. -.

strengthen an inequality (3)M by expanding the cover M into a larger cover

R with the required properties, this cannot always be done sequentially,

i.e., by introducing the elements of R\N one at a time. This is illustrated

by the following example.

Example 2. In the inequality

8x1X2 + 5xIx 5 + 5X1X6 + 4x2x3x4 + X3x5 + x4x < 12,

let the sets Qj, j = 1,...,6, be indexed from left to right. Taking
M = (1,2,3,43, we obtain the inequality

l x1 + l x2 + 4x + 4x4 + 5 5 + 5x 6  .

If we attempt to expand M by setting R f MU (5), condition (7) is not

met for T = (3,5). Similarly, if we set R = MU (6), (7) is violated for

T = (4,6). However, if we set R = MU t5,63, then (7) is satisfied for all

T such that A(T)M > 0.11

For any MeC, let C(M) =MUN. As mentioned earlier, C(M) is a cover

for (2) if and only if M eC,. If C(M) is a minimal cover for (2), M is a

minimal cover for (2 ) (but the converse is not necessarily true).

We now focus on the case when C(M) is a minimal cover for (2). Recall
M 4P "M

from section 1 that in this case OM = for all ieQM and JcQ in (3)

Further, if Qm nQ 0 0, then (3) M, is vacuous.

Corollary 2.1. Let MCRQN+, Q = 0, and let C(M) be a minimal

cover for (2). Then the inequality

R-- R

R:: iiC0

:- .'" .': i ". " . .. - :- , : i'.e " . i '. ''''v , ".-.-. '.'.'. .'.'- . .... .'-'.- ..... : ' ..-.- -. v '''''''-' .. ." ""'... . _._... .,_ x , . .. . _. _ : : _. . ,' . _. -: . . : . .. . - -: - -: - . - . . .- . : .- . . _v .-. -,-R, , .-
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c-dominates (3)M if and only if

(9) 
.., 

<..(.
icQ\QM

Further, (3)R strictly c-dominates (3)M if and only if (9) holds
R R R

and either R < c0 for some keQM, or 0 < R for some teQ

Proof. if C(M) is a minimal cover for (2), then since ceH 0,

'' i c QM' ¢ieQ from the definition of A(T)M it follows that A(T)M >0

implies (QM\T)U (Q VlT) - and A(T)M = 0O" Further, for any T QMUQ ,.

A(T)M > 0 implies T QM- Therefore in this case

iR\QMiR\4iQ

and thus condition (7) of Theorem (2) becomes -

M
a) < ( + a aj

i CQ AM J 6R\,iM JeQ j -R\1

which is the same as (9). Thus (9) is necessary and sufficient for (3)R to

c-dominate M M .

Assume now that (3)R strictly c-dominates (3) Then there exists

a 0-1 vector % with support Q(x) - T that satisfies (3)M but not (3'R . Thus

there exists either k c \T such that R < R, or .eQ cT such that 0 < a "'R R O'

Conversely, if there exists k % such that R< then cOo, t

defined by Q(x°) * Q\>k] satisfies (31M but not (3)R; and if there exists

R
2eQZ such that 0 < a0R,_ then x* e 0,1 1q defined by Q(x*) (A1 satisfies

(3) but not (3)

An important practical consequence of Corollary 2.1, which is used .

in the Algorithm of the next section, can be stated as follows. For M r-N

we define

.," .'.

• .-*
* in.,....
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E 1 (M) tjisN+IQJ\QMI i jl..p

where p = max+ IQJ\QMI , and denote E(M) = Eo(M) UEI(M). (This set E(M) is the

je
same as the one used in [6].) ""

Corollary 2.2. Let M and R be as in Corollary 2.1. If ROE(M),

then (3) c-dominates (3)
Proof. Let RQE(M) and denote R, = (M)i = 0,1. Then R = URi

and

(Q\Q -fo for JcR0

for jeR

Hence

R a < M R

iGQR\QM JcR1  0 +  = --

i.e., condition (9) of Corollary 2.1 is satisfied.I

Thus any minimal cover MQN for (2+) can safely be extended to

include all terms in E(M), without weakening the inequality (3)M. The

computational effort required to identify E(M) and extend M to E(M) is linear

in q. However, we can often go beyond E(M), as will be clear when we restate

Corollary 2.1 in slightly different form.

Corollary 2.3. Let M and R be as in Corollary 2.1, and let

Ri  RfnE(M), i = l,...,p. Then the inequality (3)c -dominates (3) if
i R M

and only if

p
(10) [(i 1) E al < E aj -b.

1=2 J R i  JR 0

Further, (3) strictly c-dominates (3) if and only if (10) holds
R ~ 3 M

and either

Je~kQ a~ > b

fo "Q

for some kecQ,,,, or

% . . .. . .. . . . . . *. .. .. ..... *.. . ..... . . . . . .. . . .,, -.
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(12) a + a > b
JCR J JN"LV(j) . .

for some , Q

Proof. We show that conditions (10), (11) and (12) are equivalent

to the conditions of Corollary 2.1.
For i g QR\Q,-

S= a ai (since for J IM, ) .Q
J eR\ l i QJ e JeRli¢QJ .

while

R = E a - b.
jeR J

Thus condition (9) of Corollary 2.1 amounts to

.-
)

: i cQR\%N  i CQR\% JieRliQj 1 :.

E I (Q\m)nQj a <icR - b (-
JeR eRa

p
NowR= U Ri, and for JRi= , 0,,...,p.

i= 0 "

Hence (13) can be written as

p p
a + i a1) < a + Z a+ + ( E a bJcl a J i=2 J eR£ aj JR R1a .2 J '.a)-..-.

or, equivalently,

p p
Z a -b > E (1 a) -E (
J.RO 1=2 JSRi 1 i=2 JeR J

p= _ [(i -I ) E7 a1] ,. ..

1=2 JiRi

. . . . . . . . . . . . . . ~.
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which is precisely (10). Thus (10) is equivalent to (13), hence to (9), and

this proves the first statement.

On the other hand, the condition R < (for some kQM) of Corollary-
k '0 frsm SQ)o oolr

2.1 can be restated as

7 - a < E a-b
j eRlkeQ j JeR

R
which is equivalent to (11). Also, the condition < (0 (for some I cQ)

can be written as

[ajs < r aI  b, "

j eN" It,=cp(j) JaR

which is the same as (12). This proves the second statement.11

Condition (10) of Corollary 2.3 gives the precise extent to which a

minimal cover M for (2+) (such that Q = ) can be extended beyond the
M. C

sets E0 (M) and E (M), into sets Ei(M) for i > 2. This is extensively used

in the Algorithm described in section 3.

In particular, replacing the inequality (2) by the set of inequalities

(5) f+(x) +JZ IaJ x (J) < b (= b - o a-)

JeN j eN

we have

Corollary 2.4. Let M be a minimal cover for (5) for some €e0,

let MCRQN, and Ri =RE i = 0, 1,...,p. Assume R satisfies

QR l = 0. Then the inequality

R- R R(14)R  Q ai x i + 1 ai xI > O 0---

i CQR N+ igQRrU- _

c-dominates the generalized covering inequality

- % % % . .. -:?-*:*.-
- -. ~ C. .~h&~ .%..a~hm .b ~u b~~ b i. *b b
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* if and only if

(15)E a ( 1 i < E~ a~ b;
i=2 j eR JeR

*and (14) Rstrictly c-dominates (14) Mif and only if (15) holds and there

exists kQM such that

*(16) ____> a.>b

Proof. Specialize Corollary 2.3 to inequality (5) 1

Again, the computational effort involved in checking whether condi-

tions (15), (16) are satisfied for some R N\M is linear in q.

The following example illustrates the usefulness of these results

for obtaining a more compact linear system equivalent to a nonlinear

inequality (2) than the set of generalized covering inequalities.

Example 3. Consider the multilinear inequality

(17) 6x1 x2 x3x4 + 4x lx5 -3x 3 x4 x6 + 2x 1 x2 x4 x7 + 2x 3 x4 x8 <-7

This inequality is equivalent to the system defined by the six generalized

covering inequalities

K1 I + x 3 + x 4 + x 5 + x 6  >

x + x + x +x x+x>1 2 3 + 4 5 7

x + +x +x + x +x >11 2 3 4 5 8

x + x + x + x + x_1 2 3 + 4 6 7 >

X+ x + x + x + x+X1 2 3 4 6 8

x 1 4.x 2 x 3 + x4 + x5 + x6 + x7 + X8 >
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derived from the minimal covers (1,2,3], (1,2,4), (1,2,51, (1,3,4], (1,3,5),

and (2,3,4,5], respectively, of the implied inequality

(17) 6x1x2x3x4 + 4xx85 + 3x6 + 2x1x2x4x7 + 2x-3x4x 8 _0.

The last generalized covering inequality is the only redundant one.

Letting M = (1,2,31, it follows that QM (1,2,3,4,5,6]. Thus

Eo(M) = (1,2,3) and E (M) = (4,5). Therefore, letting R = MUEo(M)UE(M) =

(1,...,51, from Corollary 2.2, the inequality

()R 7x 1 + 7x 2 + 7x3 +7 4 + 4x5 + 3x6 + 2x7 + 2x8  7

c-dominates inequality (3)MV' which is the first of the above six. SinceM. M

the condition < of Corollary 2.1 is satisfied for k 6, (3)ck~~ "0 ,"

strictly c-dominates (3) In fact, (3) (strictly) c-dominates all

of the generalized covering inequalities and is thus equivalent to (21).ii

We conclude this section by defining an alternative linearization

of (2). To be specific, if we consider (2) to be a linear inequality in

the 0-1 variables

y I = Jrt x
icQ. . ..

and denote it by (2) then w.l.o.g. we may assume that a. > 0 for all JeN,

and that a, 2 a2  .. a n Then applying the results of [1,21, we can

replace (2)y by the equivalent set of canonical inequalities

(18) y< Is 1-1 , s 6 K.j Le (s)-'-...
- %oI

• -.
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Here e(S) is the extension of S, defined as

e(S) sU (j.tslj < jll,

with j = min j; while K is the family of strong covers for (2)y, where
S y

a minimal cover S is called strong if there exists no minimal cover T # S

such that ITI - ISI and e(S) e(T).

For any given S oK, rewriting (1 8)$ in terms of x, we can linearize it

using the above results. If we do this for every S e., we obtain a new

linearization of (2), different from the one discussed earlier. Naturally,

the question arises as to how this new linearization compares with the one

discussed above. Both approaches were implemented and tested, and the computa- L

tional results are reported in section 4.

3. An Algorithm for Solving Multilinear 0-1 Programs

We now describe several variants of an algorithm for the problem (MLP)

stated at the beginning of this paper. If the objective function f0 has

rational coefficients, then it can be linearized by introducing a new (integer)

variable z (or its binary expansion), and amending the constraint set by

one new inequality involving z and the nonlinear part of fo" Thus, w.l.o.g.

the multilinear 0-1 program can be stated in the form

Max Z c xi.
icQ .

(MLP) Z aj.( ir x0 bk , kcK L

xi 0 or 1, i Q

where the set Q is now defined as

kc. Z .

j co+

, ./ ..., . o ' - . .." ; ., % _ ., - ' .% = -. =' . .- , ~ j . ..% . . . . '- ' ..'- % % : . % " - % " . "L
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The algorithm that we present below, like the one by Granot and

Granot (9] (see also [101, and (111), generates same linear inequalities

implied by the constraint set of (MLP), and solves the resulting linear

0-1 program, which is a relaxation of (MLP). At iteration t, let this

linear 0-1 program be denoted (Pt). If an optimal solution to (Pt) is

feasible for (MLP), then it is optimal for (MLP) and we stop. Otherwise

we generate a new set of linear inequalities implied by the constraints

of (MLP), such that the new inequalities cut off the solution to (P ),

and solve the linear 0-1 program (P obtained from (P by adding

the new inequalities. Since at every iteration the solution to the

current problem (P is cut off, the algorithm is obviously finite.

Our procedure differs from that of [9, 10, 11] mainly in that we use

a more compact linearization, based on the theory of section 2. To be more

specific, we start with a set covering inequality associated with a minimal

cover, but then use Theorem 2 and its corollaries to extend the cover so

as to obtain as strong an inequality as the conditions of the corollaries

permit.

The reason for starting with inequalities associated with minimal

covers, is that for this class we can check in linear time whether the

inequality is dominated by another one and"f so, generate a dominating

inequality. Experience shows that the proportion of minimal covers that

can be extended is high (907 is a typical case) and tends to increase with

the number of terms per constraint. Since the use of extended covers tends

to produce smaller cardinality linear equivalents of each nonlinear inequality,

it can also be expected to reduce the number of iterations needed to solve (MLP).

%" . . . . .. . . • . , ,
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This is indeed the case, except for problems with few nonlinear terms per

constraint, as shown by the computational experience discussed in the next

section.

While the procedure outlined above is finite, it may take many 0

iterations. We found it therefore preferable not to solve (P ) exactly
t

at every iteration, but use a heuristic to find an approximate solution.

We proceed this way until, at some iteration t, an approximate solution

to (P is found to be feasible to (MLP). At that point we replace the

heuristic by an exact algorithm. The particular heuristic that we use on

the sequence of linear 0-I programs (P ) is the Pivot and Complement .
t

procedure of Balas and Martin [31. When we switch to an exact algorithm,

we use a branch and bound/implicit enumeration procedure implemented

by Clarence H. Martin.

Another deviation from the above outline is that we found it convenient

to periodically remove some of the linear inequalities generated earlier.

This is done according to a particular procedure so as to insure that con-

vergence is maintained.

Finally, to facilitate the search for minimal covers and their extensions, --

used in the linearization procedure, we start the algorithm by ordering once

and for all the terms of each constraint according to decreasing absolute

values of their coefficients.

As a starting solution we use the optimal solution to the unconstrained

0 0 0
problem, i.e., x defined by x = 1 if ci > 0 and xi , 0 otherwise.

A flowchart of the algorithm is shown in Figure 1.

_9_

9!!ii!
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The heart of our procedure is of course the generation of linear

inequalities. The rules to be described below are essentially based on

Corollary 2.4.

First, it should be stated that at every iteration we generate one

linear inequality from every inequality of (MLP) violated by the current
0a

solution x , except for the first iteration, when we generate one linear

inequality (using the cover M = N) from every constraint of (MLP), whether

violated or not (the exception was adopted as a result of computational

experimentation).

To describe the procedure, let

(2) Z a.( xi) < b
j6N 3 icQj .

be one of the inequalities violated by x , and let Ial 11 a2l > . > Ia,.

Denote

+ -0+

P+(xo) (jeN+ Il x=o l} P (x ° ) LJ cI N xi 0),
iCQj ieQ"

with P(x°) = P+(xo) UP (x°) Recall that inequality (2) gives rise to the

family of (all positive) inequalities

(5) a +a( TT ) + j a1 I-X( 1  b =b Z a1)j0

jeN+  J icQ j eN j N-

where t; c . Define

1-(x O) = (c:lIx ° violates (5) 3.

It is easy to show that I (x ° ) 0 0; in fact, the algorithm outlined
00 . .

below generates a mapping p (x). Thus, given x and the family of

. .. . .

. . . . . . . . . . . . . . . . . .. . . . . . .
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nonlinear inequalities (5)q, C 6'(x°) (corresponding to a particular

inequality (2) violated by x°), our cut generating algorithm consists

of the following sequence of steps:

1. Finding a minimal cover MQP(x ) and a set of cp(j), jeMN, -- -

such that x violates the corresponding generalized covering inequality.

2. Extending M to a maximal set R satisfying condition (15),

and such that (R\14) 9-N

3. Choosing cp(j) for jeN \R in a way that avoids as much as possible

producing nonzero coefficients for complementary pairs of variables, and

using it to determine the remaining coefficients of the inequality.

A discussion of each step follows.

i. Let P(x°) = {il,..., i t be ordered by the same rule as N, i.e.,

ik < ik+l, k = l,...,t - 1. Let je[l,...,t] be the largest integer such that

yi, ij+l, is a cover, and let t, Lij, j + l,...,t3 be the smallest

integer such that M =y ij+l, .... i( is a cover for (2). Then, obviously,

M is minimal.

Next choose cp(j) for jeMAN" to be the first ieQ1 such that x = 0,
0 -

a choice consistent with the requirement that cp c (x°). For any cp c§'(x ° )

chosen in this way, M satisfies the requirement of Corollary 2.4, i.e.,

QM(lNN+ % = 0, and the generalized covering inequality

N xi + - xi > I
i CQ + iQ

0corresponding to M is violated by x

2. Construct the extension R of M into N+ as follows. As in Section 2,

define --
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E i(14)+ = LiN+IlQJ\%Il il, i1 0, 1'....p.

and set E(M) E0 ML)J 1 LM First add to R the set E(M) .Next

for i - 2,...,p, consider the elements of E M+in order of increasing

aj, and include into R as many as can be included without violating condi-

tion (15). If all JeE (M) can be added to R, set i i + 1 and repeat.
i+

Otherwise stop with the last element of E (M)+ whose inclusion into R does

not lead to a violation of (15).

3. To define cp(j) for the remaining indices, i.e., for JeN-\R,

we proceed as follows. Let R be the extended set resulting at the end of

step 2 and let Ry, I e&Q U j0, be the corresponding coefficient values,

Rwhere R and the aare updated by combining variables and their complements

whenever such pairs occur. Since it is possible for either xi or x1 (but

never for both) to appear in the resulting inequality (3)R~ we partition

Q into Q, Q nd Q, where Q Li eQ1 x appears in (3)q~3  QR Li Rh

appears in (3 and Q4 Q\(C UQ-) We then choose cp(j) according to

the following rule:

if Q \Q 0, let T(j) be the first index in Qj\QR* .j

if QA 0, but Q n fQR # 0, let cp(j) =h, where =% max (o,,i rQ n R-
R R

Otherwise, let cp(j) -k, where mi mm ,

R ROnce cp(j) is selected, set R R RU (CP(j), update a~( and cas

well as Q R9 QR and Q0 (combining variables, if necessary), and proceed to

the next JeN"M. This choice is again consistent with the requirement that

0
P (X )
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Having generated the linear inequality, we eliminate the complemented

variables, i.e., restate the inequality in the original variables, and add

it to the current linear 0-1 program.

Next we illustrate the procedure on an example.

Example 4. Consider the multilinear inequality

(19) 16x 2x4x5 - 10x2x6 + 10x x2x3 + 5xlX 5 - 4xsx7 + 4x3x5 < I,

0
which is violated by x = (1,1,1,0,1,1,0). We have = 2,4,5], Q2 = (2,6],

Q= (1,2,3), Q4  ( (1,5], Q (5,7], (6 = (3,51. Further, N+  (1,3,4,6),

N = (2,5), and P+(x° ) = (3,4,6), P-(x ° ) = (5), P(x° ) = (3,4,5,6]. -

The corresponding inequality with positive coefficients is (in general

form)

0) 16x2x4x5 + lox (2) + lOx 2X3 + 5x1x5 + 4x(5) 
+ 4x3x5 < 15,

where cp(2) and cp(5 ) depend on the choice of cPe (x°).

1. We identify the minimal cover M = (3,4,5) for (19), which is also

a minimal cover for (20) . We then choose cp(5) - 7 and thus obtain

= ,2,3,5), QMf-= (7],

Applying Theorem I to (20),,, we derive from the minimal cover M the

generalized covering inequality

(21) x + x2 + x3 + x5 + x >

0
violated by x

2. We identify the sets E (M) t3,4,6), EI(M) (1), and since

E(M)= for i > 2, we have R = MUE(M) = (1,3,4,5,6), QR = (1,2,3,4,5,7}.

•*.:.**....

i ,o -o ,, °° ,•, , -,. 4",° • . . o , • ,, ", •% ", . ". ", • % , 
•

•e % % . % , . -. ° ° 1%",, *",*S ,"• " , • *. * "• *• • * *
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3. For j = 2 (JcN=\R), we set (p(2) - 6, since Q = (6], and

update R by including (2}. Thus R - (1,2,3,4,5,6], and by applying

Theorem 1 to (20) (with cp(2) = 6 and P(5) 7), we obtain from the extended

cover R the inequality

15x + 26x + 14x + 16x 4 + 25x +lOx + 4x > 34
1 2 3 4 x5 ~6 x7

0which is also violated by x and which strictly c-dominates the generalized

covering inequality (21).Ij

As mentioned earlier, we found it necessary to periodically remove

inequalities from the linear 0-1 program in order to keep its size within

manageable limits. The cut dropping procedure operates as follows. The set V

of all inequalities generated during the procedure is partitioned into three

subsets. V1 contains exactly one inequality generated at each iteration. -

namely the one derived from the most violated constraint of (ILP). Cuts in

V1 are never removed, as a guarantee that evr.,ry solution to the linear 0-1

program generated during the procedure is cut off by at least one inequality.

V2 consists of all inequalities associated with extended covers and not

contained in V1, whereas V3 consists of the remaining inequalities (i.e.,

those associated with minimal covers that could not be extended).

Whenever the number of inequalities in the linear 0-1 program attains

a predetermined threshold value 6, all inequalities in V3 not binding at the

current solution are dropped. The subset V3 is our first preference for

dropping, since it usually consists of the weakest inequalities of the current

system. If removing the nonbinding inequalities in V3 is not sufficient for

accommodating all the inequalities generated at the current iteration, then

the nonbinding inequalities in V2 are also dropped. Finally, if removing all
2- .'
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the nonbinding inequalities of V3 and V2 is still insufficient, we drop an

appropriate number of binding inequalities in V and, if necessary, in V
3 2'

This completes the description of the main version of our algorithm,

henceforth called Algorithm I. Two additional versions of the algorithm were

implemented, which will now be briefly described.

Algorithm II differs from Algorithm I in that it generates linear

inequalities not directly from an inequality (2) of (MLP), but from an extended

canonical inequality implied by (2) y, as described at the end of section 2.

The choice of the inequality (2), respectively (2)y , as well as that of the

minimal cover M, is the same as in Algorithm I. Another minimal cover C is

then identified, such that Icl I ml and e(m) ce(c) (preferably, but not

necessarily, C M). The cut generating procedure described above is then

applied to the canonical inequality defined by e(M) and expressed in terms-

of x, for which M is still a minimal cover. Everything else is as in Algorithm I.

Finally, Algorithm III differs from the other two versions by the

fact that it derives only generalized covering inequalities corresponding to

minimal-covers without attempting to strengthen them by extending the covers.

For this version, the choice of the minimal cover is done differently, namely

by setting M = £il,...,ikl, where k is the smallest integer such that M is

a cover. As a result, M (which is of course minimal) is of smaller cardinality

than the cover selected in Algorithm 1 which in the absence of the extension

procedure is preferable. The superiority of this choice of minimal cover for this

particular algorithm was unequivocally supported in the computational testing.

The other ingredients of Algorithm III are the same as those of I and II.

Algorithm III may be viewed as our version of the algorithm of Granot and Granot

[91; the differences from the latter (improvements in our view) having been-

adopted in order to make it comparable with Algorithms I and 11.

A.k



-28-

Algorithm 1, which for all but very sparse problems is the most

efficient of the three procedures implemented, was also run in the heuristic

mode, i.e., by removing all steps subsequent to the finding of a feasible solu-

tion to (MLP). The purpose of this exercise was to obtain information on the .

quality of the solutions obtainable by such an approach.

4. Computational Results

The algorithms discussed above were coded in FORTRAN and tested on a

series of randomly generated test problems, using an IBM 3081 Model K computer

and a FORTRAN H level compiler.

The first set of test problems consists of 30 multilinear 0-I

programs, 5 in each of 6 classes that differ among themselves in the number

of terms per constraint. The number of constraints and variables (denoted by

m and n respectively) is the same in all of these problems (m = 10, n = 30),

and the number of terms per constraint is randomly drawn from a uniform

distribution on the interval [3, TI, where T is shown in Table 1. The

"* constraint coefficients akj are integers uniformly distributed on [- 5, 15], m "-

while the bk are integers drawn from a uniform distribution on (0.3sk, 0 S'k) •

where sk =Zak. The cost functions are linear, with integer coefficients

uniformly distributed on [1, 20]. Finally, the number of variables per term

is uniformly distributed on (2, 61. The results are shown in Table I. Our

remaining 55 test problems were generated in the same manner as the first set,

with the values of m, n and T as indicated in the tables. The test problems

are available upon request. Algorithm I was also tested on a set of problems

from the literature.

All test problems were run under two kinds of limitations (as indicated

in the tables): a time limit (1 or 5 minutes, depending on the phenomenon

..... '.Y.
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studied) and a limit (150 or 200) on the number of iterations, hence on the

number of nonremovable inequalities generated, due to space limitations. The

latter limit is different from the threshold value A that triggers the cut

dropping routine. In Algorithms I and II, after some experimentation A was set

to 2n, i.e., twice the number of variables; whereas in Algorithm III computational

tests indicated a higher value, and A was set equal to the maximum number of.,]

iterations (150 or 200).

All CPU times reported are exclusive of input/output time. The

maximum input time for any of the test problems was 0.02 seconds.

1,2,3
Table I. Number of problems solved and average CPU time (seconds). '

Algorithm I Algorithm II Algorithm III

m n T No. solved Time No. solved Time No. solved Time

10 30 10 5 2.6 5 1.3 5 0.6

10 30 20 5 0.2 5 0.2 5 0.2

10 30 30 5 2.8 5 10.8 5 14.6

10 30 40 5 2.6 3 24.6 3 24.8

10 30 50 5 8.5 3 33.2 2 29.9

10 30 60 5 4.5 4 25.2 2 26.9

1. 5 problems per class.

2. Limit set to 1 minute CPU time or 150 iterations per problem.

3. Time averaged for all 5 problems. Time for problems not solved
within 1 minute taken to be 1 minute.

Table i shows that although Algorithm III performs somewhat better than

Algorithm I on the problems with T - 10 and T = 20 (i.e., with 6 and 12

constraints on the average, respectively), its performance quickly deteriorates -,



30

for higher values of T, as reflected in the sharply decreasing number of

problems solved within the limits allowed. This concurs with the observation

of Granot, Granot, and Vaessen [11] that for their algorithm (which performs

phenomenally well on sparse problems), CPU time appears to grow exponentially

with T. At the same time, the performance of Algorithm I is only moderately

affected by the increase of T. As for Algorithm II, its performance is not

better than that of III on the problems with small T, and considerably worse

* than that of Algorithm I on the problems with large T. Thus the perforrua, -e

of Algorithm 11 will not be further pursued.

Table 2 compares the performance of Algorithms I and III on the same

set of problems with the time and iteration limits for Algorithm III increased

* to 5 minutes and 200 iterations, respectively.

Table 2. Number of problems solved and averaste CPU time (econds).'

Algorithm 12 Algorithm 1113

M n T No. solved Time No. solved Time

10 30 10 5 2.6 5 0.6

10 30 20 5 0.2 5 0.2

10 30 30 5 2.8 5 14.6

10 30 40 5 2.6 14 111.2

10 30 50 5 8.5 3 91.5

10 30 60 5 4.5 4 76.9

1. 5 problems per class. Time averaged for all 5 problems.

2. Limit set to 1 minute or 150 iterations per problem.

3. Limit set to 5 minutes or 200 iterations per problem. Time

for problems not solved within 5 minutes taken to be 5 minutes.

f............................................,.
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The results show an even sharper contrast between the sensitivity of

the two algorithms to an increase in the number of terms per constraints.

We conclude that the more compact linearization based on the theory of

section 2 definitely pays off for problems with more than 12-15 terms per

constraint.

In Table 3 we compare the average number of iterations and cuts

(linear inequalities) generated, in order to better understand the difference

in the performance of the two algorithms. We see that as T is increased

from, say, 30 to 60, the number of iterations and cuts increases by more

than 400% for Algorithm I1, as opposed to 8-17% for Algorithm 1. On the -

other hand, while the percentage of covers that can be extended (in Algorithm I)

Table 3. Number of iterations and of cuts.

Algorithm I2 Algorithm III3

m n T Iterations Cuts Perce!nt covers Iterations Cuts
"___-__extended

10 30 10 5.8 30.8 89.6 8.6 30.0

10 30 20 4.0 25.0 94.5 7.8 28.4

10 30 30 8.4 39.4 95.3 23.0 92.8

10 30 40 9.6 40.0 95.1 45.4 172.04

3 510 30 50 12.0 46.8 99.5 75.6 303.0
4 4

10 30 60 9.8 42.6 98.3 109.04 436.24

1. 5 problems per class. Values averaged for all 5 problems.

2. Limit set to 1 minute or 150 iterations per problem.

3. Limit set to 5 minutes or 200 iterations per problem. "."'."

4. only 4 problems solved to optimality.

5. Only 3 problems solved to optimality.

e°--



-32-

increases with T, the increase is only modest, since this percentage is high

to begin with (i.e., for all problem classes). This modest increase cannot

fully account for the sharply increasing difference in the number of iterations

required by the two Algorithms. What the table does not show, however, is

that as the number of terms per constraint increases, not only does the per-

centage of covers that can be extended increase, but more importantly, there

is a significant increase in the extent to which every minimal cover can

be extended: with more terms per constraint, many more indices are included

in the extension of each cover.

In Tables 4 and 5 we illustrate the effect of an increase in the number

of variables and constraints, respectively, on the performance of Algorithm I.

Table 4. Effect of an increase in the number of variables (Algorithm 1)1

m n T No. solved (seIds)rtions ut Percent covers

10 30 30 5 2.8 8.4 39.4 95.3

10 40 30 5 6.4 11.8 44.2 96.5

10 50 30 5 17.7 11.4 45.2 96.3

1. 5 problems per class.
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* Table 5. Effect of an increase in the number of constraints (Algorithm 1) 1,2,3

* i n T No. solved Time Iterations Cuts Percent covers
(seconds) Iextended

5 30 30 . 5 0.4 5.8 17.0 95.1

10 30 30 5 2.8 8.4 39.4 i 95.3

15 30 30 4 75.2 14.8 81.4 95.3

20 30 30 5 40.7 22.2 109.6 92.6

1. 5 problems per class.

2. Lfiit set to 5 minutes or 150 iterations per problem.

3. Values averaged for all 5 problems. Time for problems not solved

within 5 minutes taken to be 5 minutes.

Table 4 shows that as the number of variables increases from 30 to 50,

there is a corresponding increase in the time required to solve the problems.

This is of course to be expected, since the number of variables increases to

the same extent in the linear 0-1 program as in (MLP). Note, however, that

* the number of iterations increases by only about 1/3 as the number of variables

* increases three times. Table 5 shows a marked increase in computing time

as well as the number of iterations and cuts as the number of constraints

increases. This is due to the fact that the number of inequalities in the

* linear equivalent of (I4LP) sharply rises with the number of constraints of

(MLP), hence so does the ntzmber of iterations required to generate an appropriate

subset of the linear inequalities.

Algorithm I was also tested on the series of problems solved by Taha

[21]. Although these problems are not large and have relatively few terms per
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constraint, we ran them in order to observe the performance of the algorithm

on a known set of multilinear 0-1 problems with nonlinear objective functions.

As described in section 3, we chose to linearize the objective function by

introducing one new constraint and an appropriate number of new 0-1 variables.

The results of this test are reported in Table 6. The symbols m and n denote

the number of constraints and variables, respectively, of the original prob-

lems (before the above mentioned transformation). Problem 2C, which took 41.4

seconds to solve, seems to be very tightly constrained.

Table 6. Algorithm I tested on Taha's (211 problems -

Problem m n Average no. of Time Iterations Percent
terms per (seconds) covers

constraint extended -

IA 3 5 4.3 0.02 4 75.0

1B 3 10 4.3 0.86 36 16.2 . .

1C 3 20 4.3 5.42 56 9.4

2A 7 5 6 0.07 5 82.8

2B 7 10 6 0.15 6 69.2

2C 7 20 6 41.40 91 42.6 -
S

2D 7 30 6 6.81 37 46.1 .

2E 7 5 6 0.03 1 100.0

3A 6 10 4.7 0.02 2 100.0

3B 6 10 4.7 0.02 3 100.0

3C 6 10 4.7 0.04 6 100.0

3D 6 10 4.7 0.18 9 95.8 "

3E 6 10 4.7 0.17 8 100.0

S.-:
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Finally, in the last two tables we examine the performance of

Algorithm I in the heuristic mode. When used as a heuristic, Algorithm I

stops at the first (approximate) solution of the linear 0-1 program found by

Pivot and Complement that is feasible to (MLP). When Pivot and Complement fails

to find a feasible solution, the branch and bound procedure is applied until

it finds a first feasible solution.

Table 7 Algorithm I in the heuristic mode
I

m n T No. Iterations Time Proximity Proximity
solved (seconds) to to

LP bound integer
(7.) optimum

10 30 10 5 5.0 0.3 3.5 0.00

10 30 20 5 4.0 0.1 1.8 0.25

10 30 30 5 8.2 0.6 2.7 0.08

10 30 40 5 8.8 0.6 2.4 0.07

10 30 50 5 11.2 1.1 2.4 0.14

10 30 60 5 9.4 0.8 2.6 0.14

1. 5 problems per class. Values averaged for all 5 problems.

The linear programming solution to the last linear 0-1 program (more

precisely, the lowest value of any LP solved during the procedure), rounded

down to the nearest integer, provides an upper bound for the optimum of

(MLP), which we call the LP bound. This bound is guaranteed, but in most

cases not tight. For the problems of Table 7 the integer optimum is also

known, so the quality of the heuristic solution can be measured against the

-: . .
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actual optimum. For the problems of Table 8 this is niot the case, and the

only measure available is the LP bound. On both counts, the quality of the

* ~Solutions obtained by using Algorithm I in the heuristic mode seems excellent,

* and the computational effort is modest.

Table 8. Additional tests with the heuristic'

m ni T INo. solved Iterations Time Proximity
I(seconds) to LP

bound

10 30 70 5 23.8 1.4 2.8

*10 40 30 5 10.4 1.0 3.0

10 50 30 5 11.2 1.9 1.8

*10 50 40 5 14.0 3.3 1.8

10 50 50 5 9.0 1.2 1.6

5 100 30 5 7.0 0.6 0.4

5 150 30 5 6.4 1.0 0.4

5 100 50 5 15.4 6.2 0.8

1 . 5 problems per class. Values averaged for all 5 problems.

We conclude from this computational study that Algorithm 1, based

on the linearization of (6] and section 2 is an efficient procedure for solving

mutlnear 0-1 programs to optimality. In particular, problems having more

*than 20 terms per constraint have now been opened up to exact solution. The

*use of the first phase of the algorithm as a heuristic is also an attractive

option for problems with many constraints and/or variables, in that high

*quality solutions can be obtained at a modest computational cost.
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